
SRI International Bioinformatics1

A New Advanced Query Web Page

To replace the advanced query web form
on www.BioCyc.org

Mario Latendresse
Bioinformatics Research Group

SRI International
Mario@ai.sri.com

and its query language

SRI International Bioinformatics2

The Actual Advanced Query Form

SRI International Bioinformatics3

Major Limitation of the Actual Advanced
Query Form

Only one class of objects allowed in one query: cannot join
several smaller queries covering different domains.

That is, the search space is done on one datatype: pathway,
gene, reaction, protein, or transcription unit, etc.

Imagine that you have a list of all pathways of E. Coli with
their attributes: you then go through each one verifying
the conditions on a selected number of attributes.

But you cannot go look into another list, say reactions, while
you are looking through pathways.

SRI International Bioinformatics4

Other Limitations of the Actual Query Form

1. Only one global logical connective is allowed in
one query: either “and”, “or”, or “exclusive-or”.

2. Only one database can be selected in one query.
3. Previous queries cannot be combined to form a

new query.
4. Number of conditionals limited to five.
5. The result returned limited to one type of

objects.

SRI International Bioinformatics5

Query Language as an intermediate
Language

Query Language

Web Page with Query Form

Executable Lisp

We present this
language

SRI International Bioinformatics6

More flexibility is better

In SQL, there are many syntactical and semantics
restrictions.

In Lisp, you have a lot of flexibility: no type
declaration, many datatypes, etc., but an
uncommon syntax.

It becomes easier when there are many ways to
express a search.

Purely functional approach: it is easier to reuse
(embed) queries.

SRI International Bioinformatics7

Our Query Language:

is the intermediate language used by the new
advanced query page;
has a succinct and readable infix (non-Lisp)
syntax to be used directly to write queries;
will be directly accessible from Lisp: you can type
the queries at the command prompt or as any
Lisp expression;
is based on Set Comprehension

Iterates through the elements of sets keeping the
ones satisfying some conditionals.

SRI International Bioinformatics8

Set Comprehension in Mathematics

o One domain (integers) and one conditional:
{ x : x in N, x*x < 100 }

This set is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
o All points on a circle of radius d:

{ (x, y) : x in R, y in R, x*x + y*y = d*d }

o All points inside a sphere of radius d:
{ (x, y, z) : x in R, y in R, z in R, x*x+y*y+z*z < d*d }

SRI International Bioinformatics9

General Set Comprehension

{ head expression:
generator, conditional, …, conditional,
generator, conditional, …, conditional,
… }

A generator allows the user to “talk about” the elements from
a set, and the conditionals select the elements you really
want to “talk about”. The conditionals used attributes from
the elements of this or previous generators.

The head expression is the result to keep for each tuple of
elements satisfying the conditionals.

SRI International Bioinformatics10

General Set Comprehension

The generators and conditionals are interpreted
from left to right.
The head expression specifies what to return, the
content of the output:
Often it is simply the selected elements from one

generator. Sometimes it is a list of elements from
different generators. Sometimes even more
complicated…

SRI International Bioinformatics11

In Set Comprehension the Search Space

Is the Cartesian products of several datatypes:

Say, while you search through pathways, you can
look into the list of reactions, proteins, genes, etc.

The search space can be something like:

(Pathways, Reactions, Proteins, Genes)

SRI International Bioinformatics12

A first simple example for PGDBs

{ x : x <- Ecoli^^Reactions, #x^Left < #x^Right }

This is the set of reactions in E. Coli for which the
number of left substrates is less than the number
of right substrates.

The generator is Ecoli^^Reactions: the list of
reactions from E. Coli. There is one conditional.

SRI International Bioinformatics13

A Second Simple Example

All reactions of E. Coli that are in at least two
pathways:

{ r : r <- ecoli^^reactions, #r^in-pathway > 1 }

It is important to know well the underlying schema
of the PGDB to write queries.

SRI International Bioinformatics14

Set of Tuples: the output is a table

{ (x, #x^Left, #x^Right) :
x <- Ecoli^^Reactions, #x^Left < #x^Right }

The output is a table where each row is one tuple
found: each column is an element of the tuple.

In this case, a three columns table where the
second and third column are integers: the number
of substrates on the left and right.

SRI International Bioinformatics15

Two generators: the second is based on each
element from the first

Returns all reactions from E. Coli that have at least one left
substrate in its right side.

{ r : r <- ecoli^^reactions, c <- r^left, c in r^right }

The following will give the same reactions with a different
repeated substrate since it also returns the substrate with
the reaction:

{ (r,c) : r <- ecoli^^reactions, c <- r^left, c in r^right }

SRI International Bioinformatics16

A Variation on Two Generators

Keep the intersection:

{ (r, lr) : r <- ecoli^^reactions, lr := r^left ** r^right,
#lr > 0 }

It returns the reactions and the intersection of the
left and right substrates for each reaction.

The output is a table where each row has a different
reaction: the first column is the reaction and the
second column a list of common left/right
substrates.

SRI International Bioinformatics17

All enzymes of E. coli that catalyze at least
two reactions in the same pathway

{ e : e <- ecoli^^proteins, r1 <- e^catalyze,
r2 <- e^catalyze, r1 != r2,
#(r1^in-pathway ** r2^in-pathway) > 0 }

SRI International Bioinformatics18

A second solution

{ e : p <- ecoli^^pathways, r1 <- p^reactions,
r2 <- p^reactions, r1 != r2,
e := r1^enzymatic-reaction,
e = r2^enzymatic-reaction }

SRI International Bioinformatics19

A Third solution

{ e : r1 <- ecoli^^reactions, r2 <- ecoli^^reactions,
r1 != r2, #(r1^in-pathway ** r2^in-pathway) > 0,
e := r1^enzymatic-reaction^enzyme }

Most likely the least efficient: there are over one
million pairs (r1, r2) to go through.

SRI International Bioinformatics20

Set Comprehension versus
List Comprehension

A List Comprehension uses lists instead of sets.
A list is useful if:

i) Order of elements is important (e.g. attribute reaction-list); or
ii) Repetition of elements is significant.

List Comprehension uses ‘[…]’ instead of ‘{…}’.
List Comprehension is more efficient to compute.

If it is known that no repetition can occur when selecting
objects from a database, it is then more efficient to use […]

SRI International Bioinformatics21

Limitations of this Query Language

In general, recursion is not available: some
algorithms you can write in Lisp cannot be written
in this query language.
Example, going through tree structures (e.g.,
complex proteins) with an unknown depth.

SRI International Bioinformatics22

Solutions to these limitations

Partial solution: adding specific functions like
genes-of-reaction, etc. This is nice and simple for
the user. (caveat: formal definitions should be
provided for these.)
General solution: adding an escape mechanism to
go into Lisp. It is rather simple, but quite messy
and complicated.

SRI International Bioinformatics23

The (still under design) Web Interface

Will keep previous queries available.
Will provide a step by step construction of a
query with feedback.
Uses a syntax which is closer to English.
Mostly based on selectable databases, classes,
attributes, operators, etc.

SRI International Bioinformatics24

Example Interface, step by step
construction with feedback

a) Select object type and database:
[select type of objects] from [select database]
constraints:
[op] [select attribute of object a] [op]
…

b) Select object type and database:
[select type of objects] from [select database]
constraints:
[op] [select attribute of object] [a,b] [op]
…

c) …
…

SRI International Bioinformatics25

Send in Your Queries!

I would like to know the kind of queries you would
like to do on BioCyc

Send in your queries, in English (not Lisp!)
(Or French) to me:

mario@ai.sri.com

I’ll acknowledge queries in the documentation.

mailto:mario@ai.sri.com

SRI International Bioinformatics26

Acknowledgments

Bioinformatics Research Group
The curators who provided some queries, in
particular:

Ingrid Keseler
Michelle Green

	A New Advanced Query Web Page
	The Actual Advanced Query Form
	Major Limitation of the Actual Advanced Query Form
	Other Limitations of the Actual Query Form
	Query Language as an intermediate Language
	More flexibility is better
	Our Query Language:
	Set Comprehension in Mathematics
	General Set Comprehension
	General Set Comprehension
	In Set Comprehension the Search Space
	A first simple example for PGDBs
	A Second Simple Example
	Set of Tuples: the output is a table
	Two generators: the second is based on each element from the first
	A Variation on Two Generators
	All enzymes of E. coli that catalyze at least two reactions in the same pathway
	A second solution
	A Third solution
	Set Comprehension versus �List Comprehension
	Limitations of this Query Language
	Solutions to these limitations
	The (still under design) Web Interface
	Example Interface, step by step construction with feedback
	Send in Your Queries!
	Acknowledgments

