

Recent Developments in the MetaCyc Database


Ron Caspi

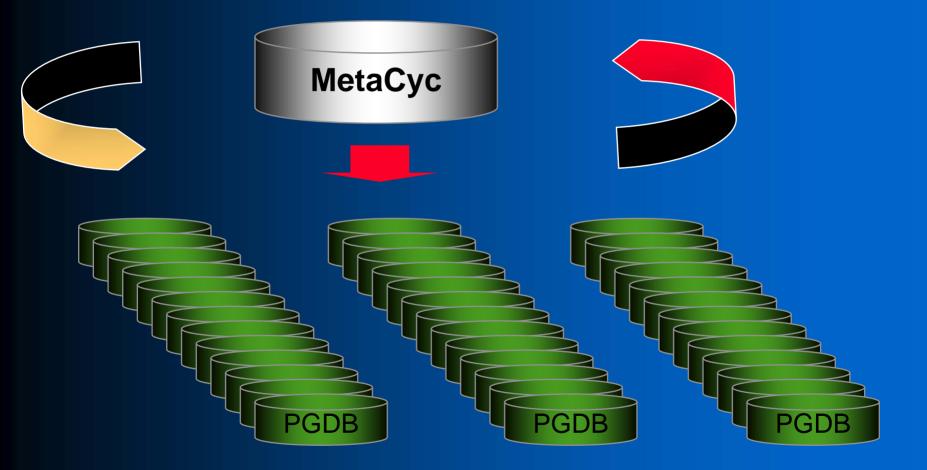
SRI International Bioinformatics

1

Introduction

MetaCyc Scope

- MetaCyc is a collection of metabolic pathways and enzymes from a wide variety of organisms, primarily microorganisms and plants
- The goal of MetaCyc is to contain a representative sample of every experimentally elucidated pathway, thereby cataloging the universe of known pathways and enzymes.



- Continuous curation by Ph.D level curators
 - Information gathered from biological and biomedical literature
- An update is released every three months

http://biocyc.org/metacyc/release-notes.shtml

MetaCyc Is Used to Create Computationally-Derived Organism-Specific Databases

Curation Conventions

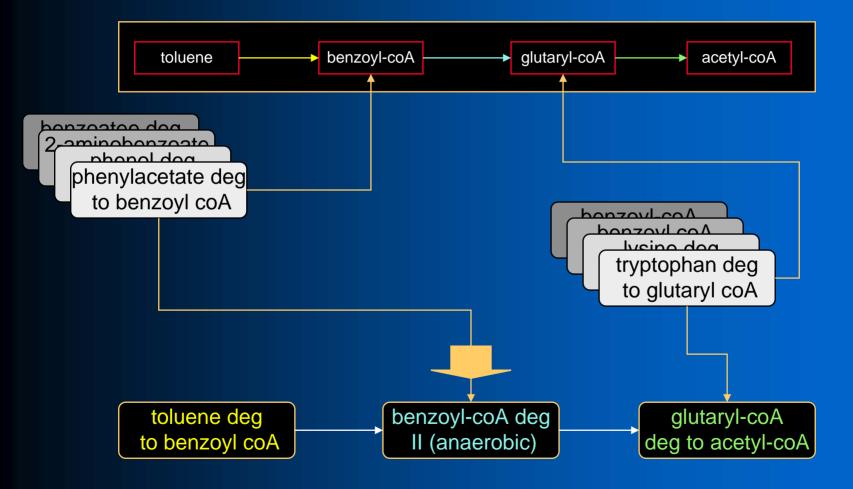
- Curate pathway enzymes for species with most experimental data
- Add enzymes from additional species if compelling reason exists (e.g., different subunit structure)
- Create pathway variants if reactions of variant differ from existing pathway
- Species list for pathway is often not exhaustive

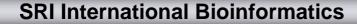
A detailed description of the curation conventions is found in the <u>Curator's Guide</u>

Criteria for Defining Pathway End Points

- End points should be stable compounds.
- Biosynthetic pathways should begin with one of the 13 intermediates of central metabolism from which all biosyntheses begin.
- A pathway (or a transport reaction) link should be created to indicate the pathway that produces the precursor metabolite.
- Degradative pathways that produce an intermediate of central metabolism should stop at that point.
- If appropriate, a pathway link should be created to indicate the pathway that processes the resulting metabolite.
- Very large or complex pathways should usually be defined as superpathways that combine several smaller base pathways divided at breakpoints.

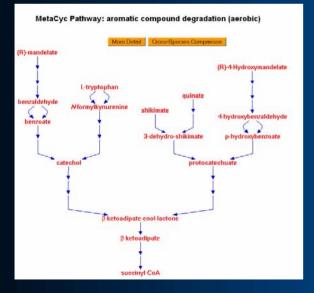
7


The 13 intermediates of central metabolism from which all biosyntheses begin


- pyruvate
- acetyl CoA
- oxaloacetate
- triose phosphate
- 3-phosphoglycerate
- phosphoenolpyruvate
- ribose-5-phosphate
- α-ketoglutarate
- succinyl CoA
- erythrose-phosphate
- fructose-6-phosphate
- glucose-6-phosphate
- sedoeptulose-7-phosphate

Modular Pathway Design

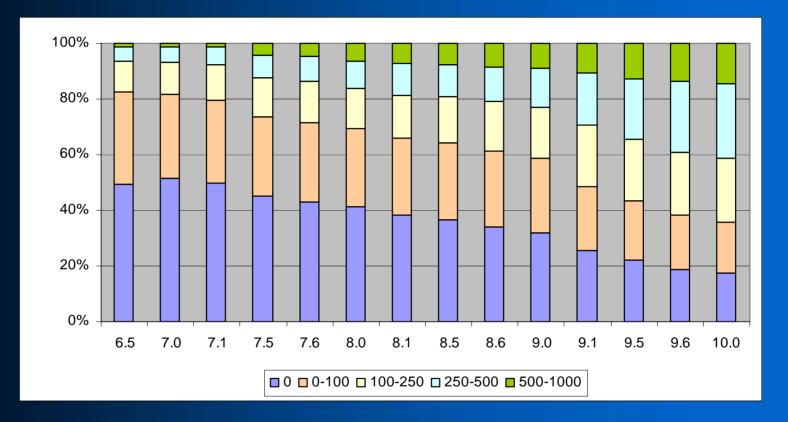
toluene degradation VI (anaerobic)



Different Kinds of Superpathways

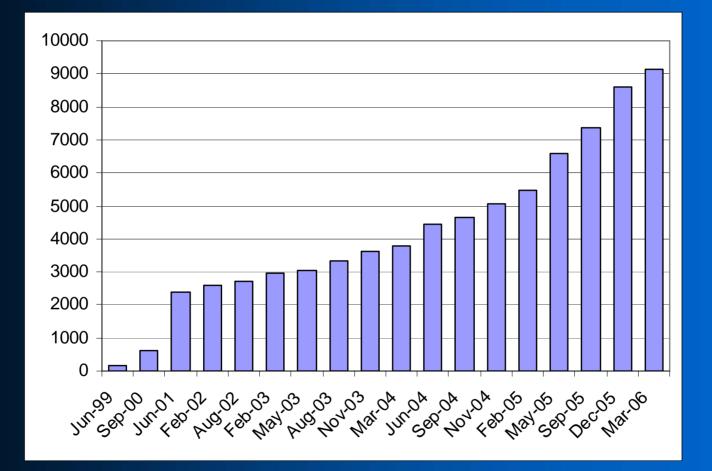
- Groups of pathways linked by their substrates
- Super-pathways are defined by their component pathways
- Multiple levels of super-pathways can be defined
- Pathway prediction algorithms accommodate super-pathways

We currently have over 65 superpathways in MetaCyc


Curation Progress

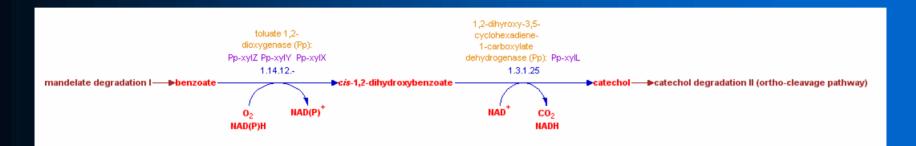
	Feb 2002	June 2006	Difference
Pathways Pathways with comments	449 161	785 618	+ 336 (75%) + 457 (283%)
Reactions	4214	5869	+ 1655 (39%)
Enzymes Enzymes with comments	1147 *	3446 3146	+ 2299 (200%) + 3146
Chemical compounds Chemical structures	2339 1858	5177 4658	+ 2838 (121%) + 2800 (150%)
Organisms	158	711	+ 553 (350%)
Citations	2597	10039	+7442 (286%)

* data not available


Distribution of Comment lengths

Pathways were divided to groups based on comments length, measured by the number of characters.

Increase in the Number of Citations


14

Hyperlinks in Pathways and Comments

Use links to other pathways whenever possible

Use hyperlinks to other database objects within comments

Comment:

Most organisms degrade <u>L-leucine</u> to <u>acetoacetate</u> and <u>acetyl-CoA</u> (see <u>leucine degradation 1</u>). The anaerobic bacterium *Clostridium sporogenes* degrades <u>L-leucine</u> to different products, which include <u>isobutyrate</u> and <u>acetate</u> [<u>Poston76</u>]. This alternative pathway starts with isomerization of <u>L-leucine</u> to <u>β-leucine</u>, performed by the enzyme <u>leucine 2,3-aminomutase</u>. <u>β-leucine</u> is then converted, presumably by a transaminase, to <u>β-ketoisocaproate</u>, which is then broken into <u>isobutyrate</u> and <u>acetate</u> [<u>Poston86</u>].

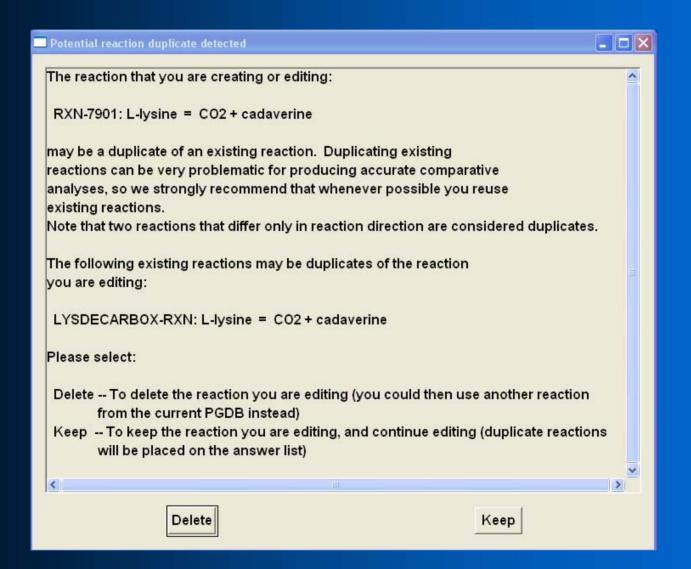
The only enzyme that has been characterized from this pathway is <u>leucine 2,3-aminomutase</u> [<u>Poston76</u>]. The enzyme was reported to also be present in mammalian tissues [<u>Poston80</u>] and green plants [<u>Freer81</u>]. However, recent work disputes this claim, having found no <u><u>B-leucine</u></u> in human blood and no <u>leucine 2,3-aminomutase</u> activity in rat liver [<u>Stabler88</u>]

Variants: leucine degradation III, leucine degradation I

Pathway Variant Classes

<u> </u>								
Pathv	vay Info Editor for PWY-5254							
Class:	Biosynthesis->Cofactors, Prosthetic Groups, Electron Carriers	ron Carriers Create variant class for t			his pathway			
Common N	ame: methanofuran biosynthesis							
	Create Variant Class for methanofuran biosynt							
		Parent class: Cofactor-Biosynthesis		Mark this class as a variant class				
				Variant class ID:				
		Variant clas	s commo	n name (if different):				
			[ocumentation string:				
nts: β- <mark>alani</mark> i	ne biosynthesis IV, β -alanine biosynthesis II, β -alanine bi	osynthesis	ш		<			
ted hy: chris	st on 30-Jun-2005				rhizobactin 1021 biosy methylerythritol phosp		^	
.са су. сппа	6 61 30-9 MH-2009				coenzyme B biosynthe	esis		
					coenzyme M biosynth formyITHF biosynthesi			
		Other members of variant clas		ers of variant class:	polyisoprenoid biosyn S-adenosylmethionine			
					pyridoxamine anabolis	m	~	
					lipoate salvade and mo	odification	>	

MetaCyc2GO Mapping


 The MetaCyc2GO mapping file contains the correspondence between MetaCyc pathways and GO process terms, and between MetaCyc reactions and GO function terms.

- It allows to propagate annotations from one database to another.
- The MetaCyc2GO file was originally maintained by GO.
- It is now continuously updated in an ongoing effort by Carnegie and SRI and the GO consortium.
 - The existing GO reactions and function terms have been checked against the latest EC nomenclature.
 - Discrepancies between GO and MetaCyc have been reviewed and corrected manually.

Eliminating Unwanted Duplicate Frames

Compound Pages Link to Regulated Enzymes

Compound pages list the enzymes that are regulated by the compounds

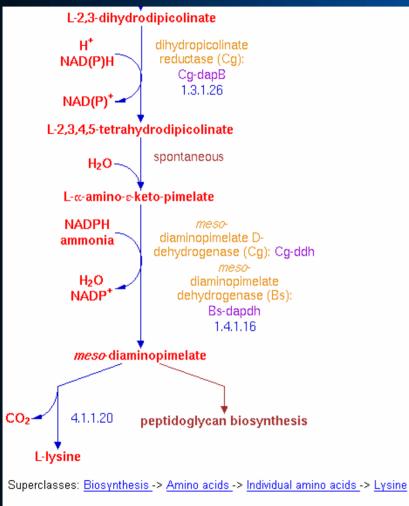
example: L-glutamate

Activator (Allosteric) of: glutaminase B

Inhibitor (Competitive) of: glutaminase A , glutaminase B , L-glutamine:D-fructose-6-phosphate aminotransferase, aspartate 1-decarboxylase, tyrosine/phenylalanine aminotransferase, glutamate synthase (NADH-dependent)

Inhibitor (Noncompetitive) of: glutamate dehydrogenase (NAD-dependent), formiminoglutamate formiminohydrolase, glutamate dehydrogenase (NADP-dependent)

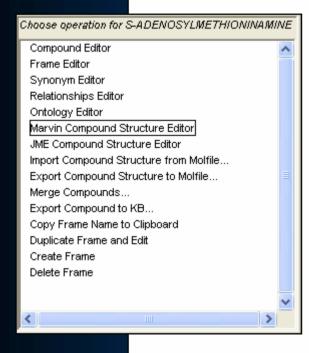
Inhibitor (Allosteric) of: pyruvate kinase

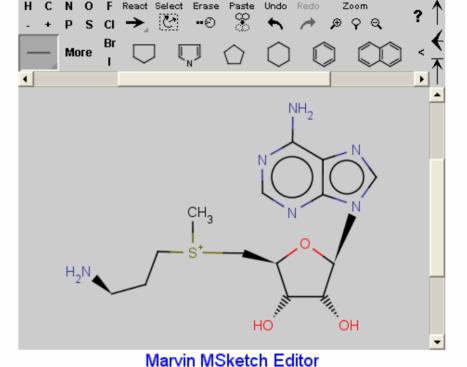

Inhibitor (Mechanism unknown) of: UDP-N-acetylmuramoylalanine-D-glutamate ligase , L-cysteine desulfhydrase, pyridoxamine-oxaloacetate transaminase

Query Page Advanced Query Page BioCyc Home

Report Errors or Provide Feedback

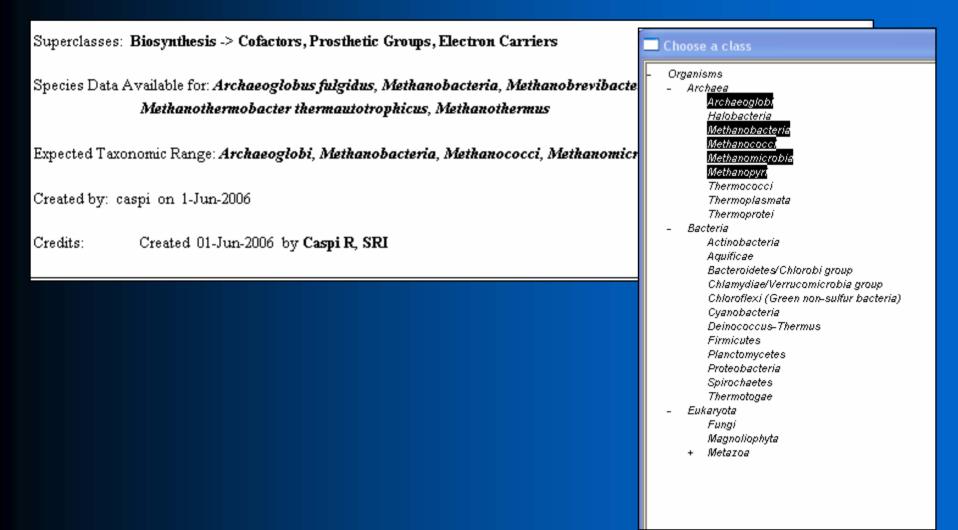
Species Abbreviations in Pathway Display




Species Data Available for: Bacillus sphaericus , Brevibacterium , Corynebacterium glutamicum , Paenibacillus macerans , Proteus vulgaris , Sporosarcina globispora , Sporosarcina pasteurii Genes and proteins are labeled in graphical diagrams with the initials of the organism's genus and species names

Support for More Chemical Structure Editors

S-ADENOSYLMETHIONINAMINE : _S_-adenosyl-L-methioninamine



To use the editor, please enable Java and JavaScript in your WWW browser.

Submit Will write back the structure into frame S-ADENOSYLMETHIO

Expected Taxonomic Range

Other MetaCyc-related Pathway Tools Improvements

• Pathways:

- Made pathway displays more compact
- Search for pathways and reactions by substrates

• Chemical structures:

- Import/export of mol files
- Search for compounds by combining name, MW, formula, and substructure

Auto-checkpointing

Future Directions

Future Curation

- Environmental pathways (degradation of explosives, pesticides etc)
- Medical pathways (antibiotics biosynthesis, microbial secondary metabolites etc)
- Pathways of commercial importance (food industry, vitamins, chemicals etc)
- General metabolism

Submitting Pathways to MetaCyc

- The pathway must be experimentally proven and described in one or more published journal articles
- Pathways and enzymes should have comments, literature citations and evidence codes
- Genes and enzymes should have links to sequence databases (e.g. Entrez and UniProt) and citations, if available
- Enzymes should have as much information as possible, such as optimal pH and temperature, Km values, inhibitor, activator and cofactor information, etc.
- Once in MetaCyc, your pathway will be used routinely by PathoLogic during the creation and updating of PGDBs

More about the pathway submission can be found at http://www.metacyc.org/MetaCycPosting.shtml

Author Crediting System

Added the ability to credit authors and institutions for creating, reviewing, or revising a pathway

Email: eurie@	MetaCyc Author: Eurie Hong genome.stanford.edu					Editor:	
Comment:	Head, Scientific Curation, SGD		Date none yet	Authors Select/Change Current selection(s): Casy	Create pi R	Organizations Select/Change Create Current selection(s): SRI	
Created:	allantoin degradation II on 27-Apr-2005, superpathway of NAD biosynthesis in eukary glutamate biosynthesis IV on 27-Apr-2005, NAD salvage pathway I on 27-Apr-2005, ergosterol biosynthesis on 21-Dec-2004, lysine biosynthesis IV on 21-Dec-2004,	otes on 27-k	Apr-2005,			Display:	
	sphingolipid metabolism on 21-Dec-2004	Credits:		ted 27-Apr-2005 by E ewed 03-Apr-2006 by		an R, Hong E, Saccharomyces Genome Da SRI	ntabase

