Caulobacter crescentus as a model
for the study of bacterial cell cycle ‘
regulation.

Leticia Britos Cavagnaro
Shapiro Lab
Developmental Biology Department

Stanford University

Note:This is a modified version of the slides used as support for the talk given by Leticia
Britos Cavagnaro at the Pathway Tools Workshop, at SRI, on August 24" 2009.

P STANFORD



Act |

It was the best of times, it was the worst of times...
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Caulobacter’s strategy
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Advantages of Caulobacter
as experimental model

Distinct polar structures {

*Easily synchronizable
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MRNA levels of 14% of Caulobacter genes
vary as a function of the cell cycle

Temporal variations Temporal regulation
in MRNA levels of functions
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Flagellar Biogenesis

Laub et al. (2000)



Cell cycle-regulated genes can be
grouped in functional modules
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Caulobacter’s cell cycle is driven by a
circuit of master regulators
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Possible arrest points upon stress or
nutrient deprivation
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How do cells rely information about
the environment to the reqgulatory
circuit that drives the cell cycle?
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Visualization and
analysis of
microarrays and
proteomics
experiments
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Cellular Overview
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Exploring Caulobacter’s transcriptional landscape




Caulobacter
relies heavily on
transcriptional
regulation
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High density transcriptional mapping of
Caulobacter’s genome

Figure 1
CauloHI1 Chip Design
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Probe index j

Application: Identification of
transcriptional start sites

Probe index i
Correlation between probe i and |

Caulobacter genes (3,761)

Operons analyzed by
TSI algorithm (2,513)

Start-site s )
predictions from tart-site

metal stress data  Predictions from
(645) cell cycle data

(323)

McGrath et al. (2007)



Application: Identification of small RNAs

VOLUME 68 NUMBER 3 MAY 2008 ISSN 0950-382X www.mol-micro.com

One example

SRNA

Small non-coding
RNAs in Caulobacter

MicroReview on o™

Zapping cell division

e Activated by starvation

Found and verified 27 novel small *Stops the cell-cycle
RNAs

Landt et al. (2008)



Application: operon mapping
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Eduardo Abeliuk
(unpublished)



Genome Expression Browser

*\Web-based browser that shows the probe expression correlations, multiple
ORF annotations, mRNA cell cycle expression profiles, and other genomic
features together on one display.

The Genome Expression Browser can be used to visually scan an arbitrary
region of the genome, and inspect interesting correlations present among
different microarray experiments or genomic features.

*Well suited for integrating data from Affy high-density tiling arrays in the
backend

«Currently contains Caulohil (Caulobacter) affy chip data. Other species
coming soon.

*The Genome Expression Browser is in closed beta.

«Contact: Eduardo Abeliuk (eabeliuk@stanford.edu). McAdams/Shapiro Lab.




Genome Expression Browser
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Location, location, location.




Caulobacter’s cell cycle is driven by a
circuit of master regulators
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The activity of the CtrA master regulator Is
controlled by proteolysis
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Ryan et al. (2004)
Iniesta et al. (2006)
Iniesta et al. (2008)



Quantitative genome-scale analysis of protein
localization in an asymmetric bacterium

John N. Werner, Eric Y. Chen, Jonathan M. Guberman, Angela R. Zippilli, Joseph J. Irgen, and Zemer Gitai’

Department of Molecular Biology, Princeton University, Princeton, MNJ 08540

Edited by Lucy Shapire, Stanford University School of Medicine, Stanford, CA, and approved March 13, 2009 (received for review February 18, 2009)

Despite the importance of subcellular localization for cellular
activities, the lack of high-throughput, high-resclution imaging
and quantitation methodologies has limited genomic localization
analysis to a small number of archival studies focused on C-
terminal fluorescent protein fusions. Here, we develop a high-
throughput pipeline for generating, imaging, and quantitating
fluorescent protein fusions that we use for the quantitative
genomic assessment of the distributions of both N- and C-terminal
fluorescent protein fusions. We identify nearly 300 localized Cau-
lobacter crescentus proteins, up to 10-fold more than were previ-
ously characterized. The localized proteins tend to be involved in
spatially or temporally dynamic processes and proteins that func-
tion together and of ten localize together as well. The distributions
of the localized proteins were quantitated by using our recently
described projected system of internal coordinates from interpo-
lated contours (PSICIC) image analysis toolkit, leading to the
identification of cellular regions that are over- orunder-enriched in
localized proteins and of potential differences in the mechanisms
that target proteins to different subcellular destinations. The
Caulobacter localizome data thus represent a resource for studying
both global properties of protein localization and specific protein
functions, whereas the localization analysis pipeline is a method-
ological resource that can be readily applied to other systems.

bacteria | Caulobacter | genomics | quantitative image analysis |
high-throughput imaging

guished by the presence of a stalk that protrudes from only 1
pole. In addition, a number of important Caulobacter proteins
have been shown to assume specific subcellular localizations (3).
These proteins serve as positive controls for genomic studies and
establish proof-of-principle examples that protein localization
plays an important role in the regulation of this organism’s
biological activities. A recent transposon-mediated forward-
genetic screen identified 11 additional localized proteins (6}, but
Canlobacter protein localization has yet to be systematically
studied at a genomic scale.

Here, we have begun to address the classical limitations of
genomic localization analysis by developing a pipeline of high-
throughput, high-resolution methods for generating, imaging,
and analyzing fluorescent protein fusions. This approach enables
the rapid, efficient, and repeated study of spatial processes on
the scale of an entire penome and allowed us to reimage the
localization of both N- and C- terminal mCherry fusions. The
identification of 289 localized proteins represents a nearly
10-fold increase in the number of localized proteins in Cane-
lobacter. By using a projected system of internal coordinates
from interpolated contours (PSICIC), a recently developed
software suite for automated image analysis (7), we quantita-
tively analyzed the accuracy and distributions of these localiza-
tions, leading to the appreciation of new aspects of Caulobacter
proteome localization. These data thus enable the cell biological
analysis of both individual proteins of interest and the general
properties of the Caulobacrer proteome.

Werner et al (2009)



Werner et al (2009)



High-throughput screen for
protein localization determinants
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Beat Christen & Mike Fero
(in preparation)



High-throughput screen for
protein localization determinants

Cell Finding /
Cell Shape Parameters

Localized Fluor Signal Locations -
Localized Fluor Signal Amplitudes ]
Delocalized Fluor Signal amplitude

- Summary Data Structure (no images)

Beat Christen & Mike Fero
(in preparation)



localized fluorescence signal [AFU]

8000

High-throughput screen for
protein localization determinants
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Dynamic sub-cellular localization of
prokaryotic signaling proteins

CtrA, response regulator

Compartmental

Early Late
Predivisional Predivisional
cell cell

Swarmer Stalked
cell cell

DivK, response regulator

Bipolar %Q—»Q—» o

PleC, histidine kinase DivJ, histidine kinase
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CckA, histidine kinase
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The End
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