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With a whole cell model, we could. ..

Interpret large-scale datasets
Predict complex behaviors
Design novel organisms rationally
Reduce development time and cost

t€The ultimate test of understanding a simple cell, more
than being able to build one, would be to build a
computer model of the cell, because that really
requires understanding at a deeper level 17

Clyde Hutchison
The New York Times, 1999

E. coli (FBA): 600 Expanded “minimal M. pneumoniae
metabolic genes cell” model “tour de force”

BioCyc: 160 genomes H. salinarium
regulatory model




Lessons of the past decade

Question 1: Can we build a whole-cell Whole-cell modeling requires a variety of approaches
model today?

Integration of diverse approaches will be essential
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Implementation

Mycoplasma genitalium

Simulation Integration Simulation

Small number of genes
Annotated genome sequence
Homology to model bacteria
Free-living for culture

Metaholite concentrations  Polymerase positions ~ Metabolic fluxes
Protein monomers Ribosome positions Cell mass
Complexes VA
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Project status (8/2010)

Metabolism
Translation

tRNA aminoacylation
RNA modification
DNA replication

Question 2: Can we predict the outcome

Protein translocation

of perturbations?

Transcription

M. genitalium: 525 genes Model goal : 401 genes

Unannotated Annotated Remaining Implemented Protein folding
124 (24%) 401 (76%) 43 (11%) 358 (89%) Ribosome assembly
Protein processing
Protein modification
RNA decay

DNA damage/repair
Cytokinesis

RNA processing
Transcription regulation
DNA supercoiling

Correctly predicted (230) Correctly predicted (230)
Incorrectly predicted (19) Incorrectly predicted (19)
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92.4% of KO simulations qualitatively correct
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Question 3: Can we interpret complex
phenotypes?

M. capricolum M. genitalium

Crz1 localization and Reporter expression in a single yeast cell

Crz1 —» —=8-C~ 2% CDRE

Crz1-mCherry localization
(arbitrary units)

Time (h)

Flux-balance analysis Whole-cell model Cai et al., Nature 2008
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