Metabolic Reconstructions from Global Ocean Sampling (GOS) Marine Metagenome

Mathangi Thiagarajan

J. Craig Venter Institute

Pathways Tools Workshop 2010

J. Craig Venter

- Metagenomics
- The Global Ocean Sampling (GOS) Project
- GOS Community Makeup
- High Throughput Data Processing
- Metabolic Reconstruction Mapping to MetaCyc and KEGG
- Metarep (Visualization) Integrating with MetaCyc and KEGG
- Pathways Tools for GOS & metagenomic projects
- Conclusion
- Acknowledgements

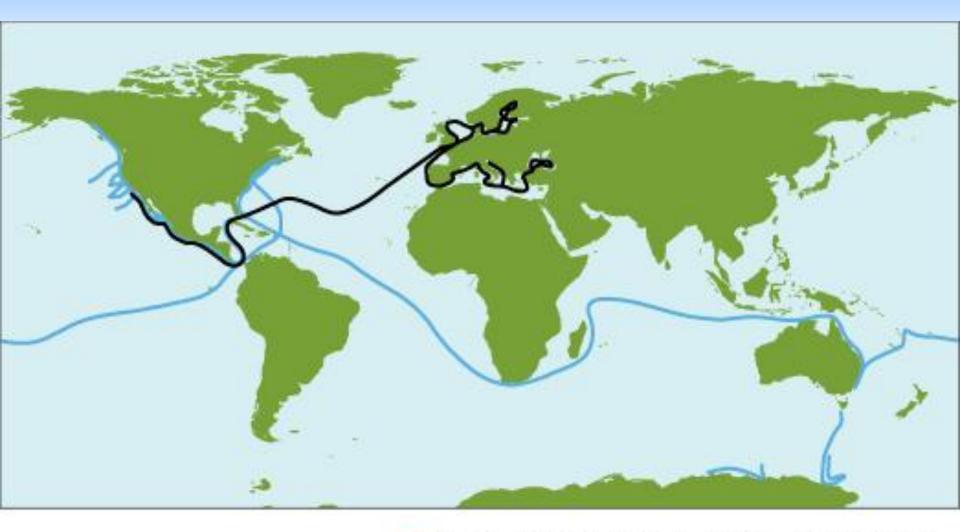
J. Craig Venter

Metagenomics

- Examining genomic content of organisms in community/environment to better understand
 - Diversity of organisms
 - Their roles and interactions in the ecosystem

- Cultivation independent approach to study microbial communities
 - DNA directly isolated from environmental sample and sequenced

J. Craig Venter

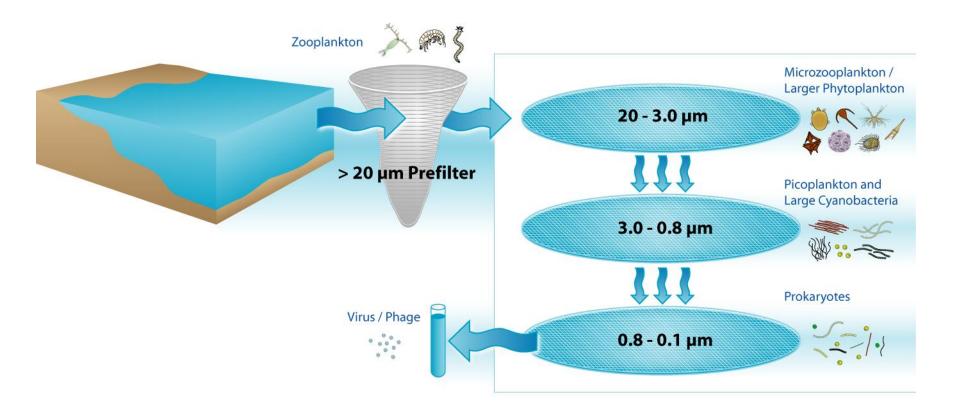

Global Ocean Sampling Expedition

Investigate the fundamental microbial contributions from the Ocean waters to energy and nutrient cycling by analyzing its

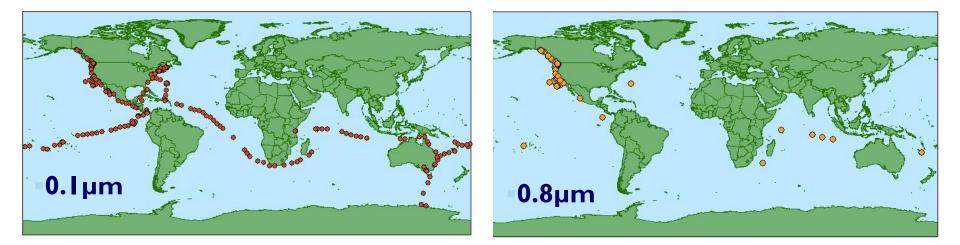
- a) biogeochemical cycling
- b) community structure and function
- c) microbial diversity
- d) adaptation and evolution
- GOS Phase I Published in PLOS Biology 2007
- **GOS** Circumnavigation Analysis Phase

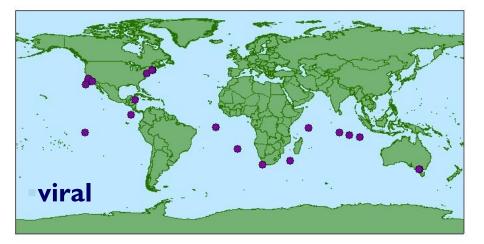
J. Craig Venter

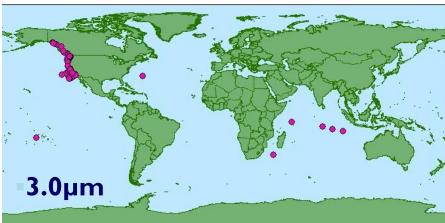
Global Ocean Sampling Expedition Route


2003 – 2008 Routes = 2009 – 2010 Route

J. Craig Venter

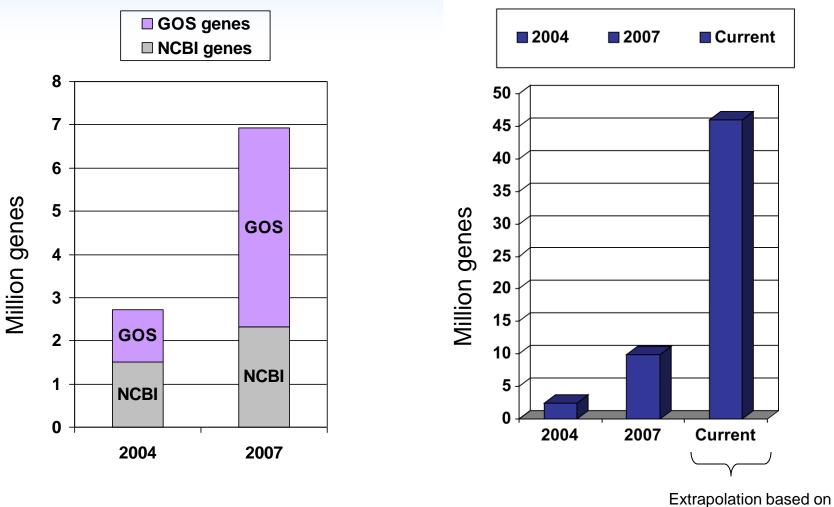

J. Craig Venter


Sample Filtration



J. Craig Venter

GOS circumnavigation data 229 stations and 291 samples



GOS data

	Reads	Proteins	Sequencing
			Technology
Phase I	7.6 Million	9.8 Million	Sanger
Circumnavigation	48 Million	~53Million	Sanger + 454

J. Craig Venter

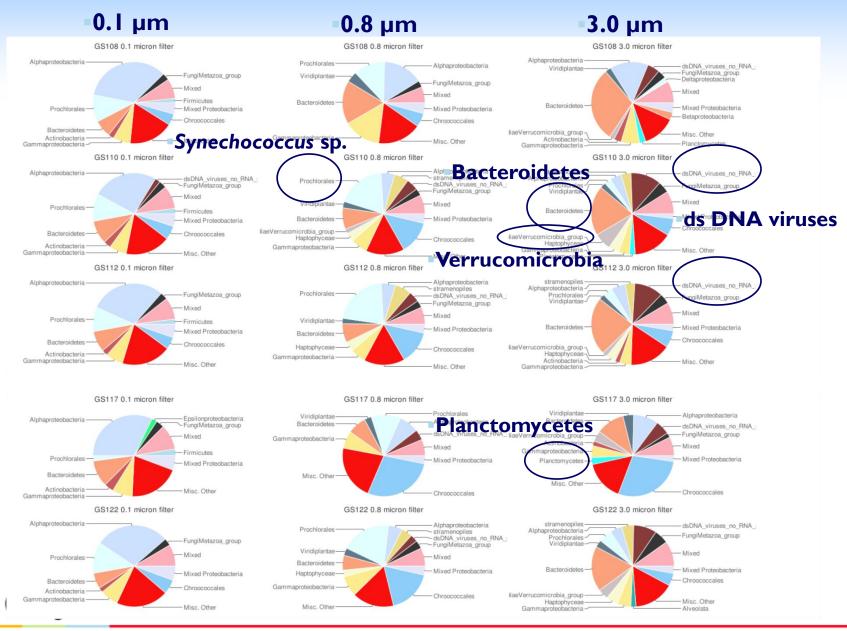
GOS dataset is expanding the protein universe

J. Craig Venter

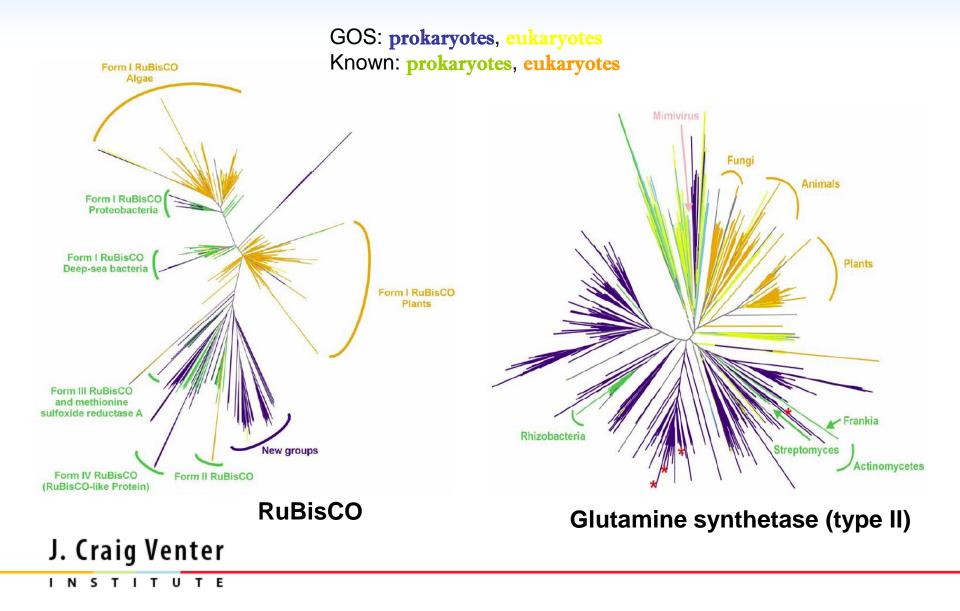
Extrapolation based on amount of GOS sequence data currently available but not yet released to public domain

Community makeup

J. Craig Venter


Taxonomic makeup of GOS samples based on 16S data from shotgun sequencing

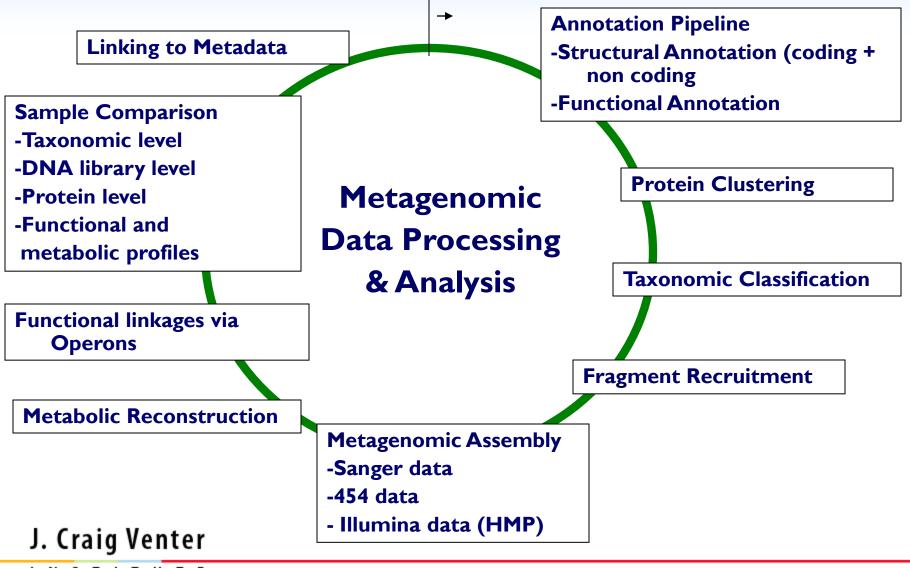
Phylum or Class	Fraction ^a
Alpha Proteobacteria	0.32
Unclassified Proteobacteria	0.155
Gamma Proteobacteria	0.132
Bacteroidetes	0.13
Cyanobacteria	0.079
Firmicutes	0.075
Actinobacteria	0.046
Marine Group A	0.022
Beta Proteobacteria	0.017
OP11	0.008
Unclassified Bacteria	0.008
Delta Proteobacteria	0.005
Planctomycetes	0.002
Epsilon Proteobacteria	0.001


^aValues shown are averages over all samples.

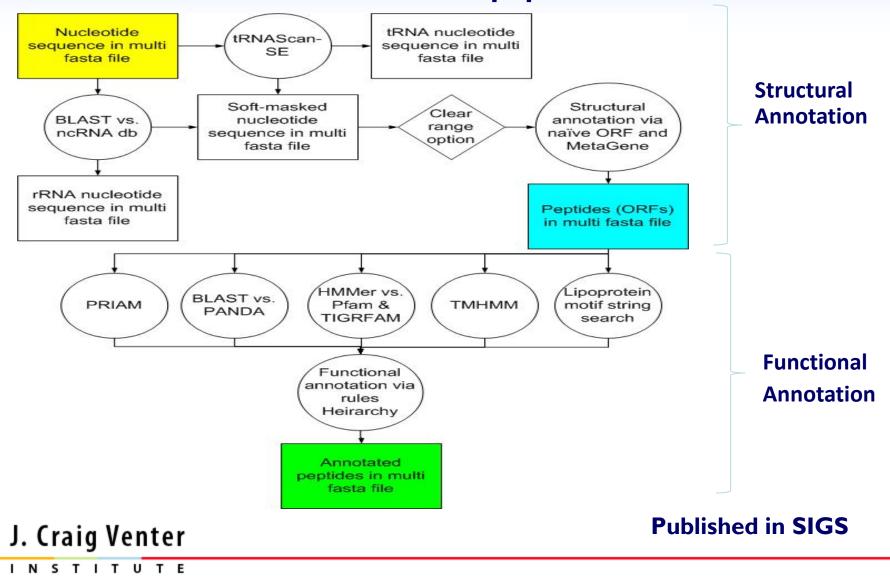
J. Craig Venter

Phylogenetic Distribution in the Indian Ocean across size-classes

GOS increases size and diversity of known protein families

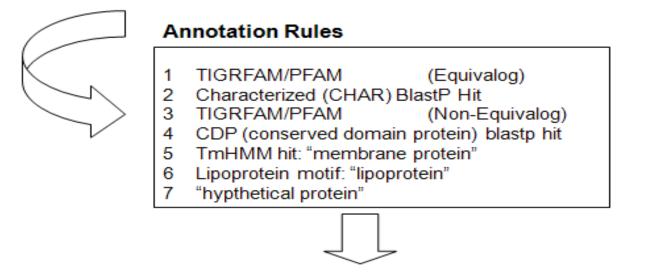


Viruses in the Marine Environment


- Abundant: ~10⁷ /ml⁻¹ of surface seawater
- Diverse: VBR ≅ 10 ; ~ 10-fold greater diversity than microbial hosts
- Influence microbial diversity through infection and host cell lysis
- Mediators of horizontal gene transfer
- Influence biogeochemical cycling, particularly carbon

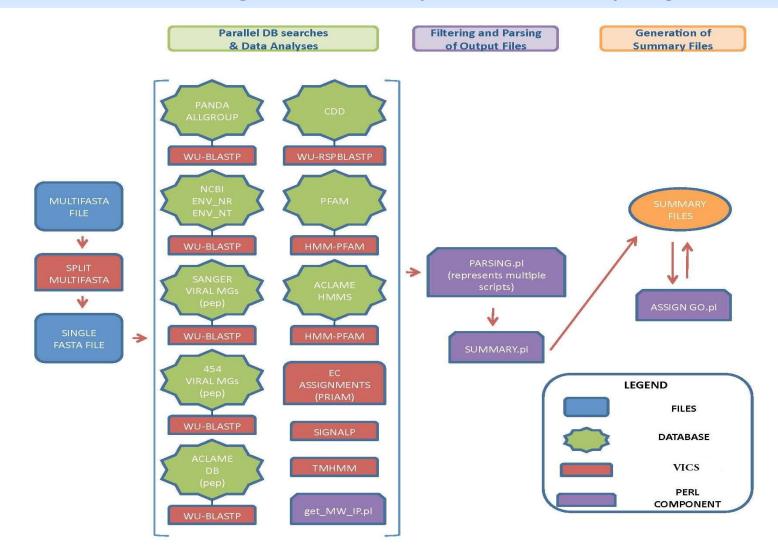
J. Craig Venter

High-throughput Metagenomic Data Analysis


Metagenomic Data Processing -Annotation pipeline

Annotation Rules Hierarchy

Evidences


HMM Hits PFAM TIGRFAM above trusted	BlastP Hits 1e-5; 35% ident; 80% cov	Rps PRIAM Hits 1e-10 cutoff EC Numbers	TmHMM	Lipoprotein Motif
cut off	CHAR database			

Common Names, Gene Symbols, EC Numbers, GO Terms, TIGR Role ids

J. Craig Venter

Viral Metagenomic (functional)Pipeline

J. Craig Venter

Annotation Rules Hierarchy (Viral)

- PFAM/TIGRFAM_HMM, equivalog above trusted cutoff
- ACLAME_PEP, %id>= 50, coverage >= 80, e-value <= 10⁻¹⁰
- ALLGROUP_PEP, %id>= 50, coverage >= 80, e-value <= 10⁻¹⁰
- ACCLAME_HMM matches, > 90% coverage, e-value < 10⁻⁵
- PFAM/TIGRFAM_HMM, non-equivalog above trusted cutoff
- CDD_RPS, %id>= 35%, coverage >= 90% of CDD-domain, e-value <= 1e⁻¹⁰
- FRAG_HMM, e-value < 1e⁻⁵
- ACLAME_PEP, %id >= 30%, coverage >= 70%, e-value <= 1e⁻⁵
- ALLGROUP_PEP, %id >= 30%, coverage >= 70%, e-value <= 1e⁻⁵
- No evidence -> hypothetical protein

J. Craig Venter

Metagenomic Assembly

Advantages

- Provides genomic context
- Reduces redundancy and complexity
- Improves annotation
- Mechanism to isolate environment specific gene regions

Challenges

- Coverage dependent
- Variation can limit the length of assemblies
- Can mask diversity

•Celera Hybrid Assembler has been updated to work with 454 Titanium reads

•Will further optimize assembly process to capture environmental diversity

J. Craig Venter

Metagenomic Data Processing - Continued

- Protein Clustering : JCVI's Protein clustering (S. Yooseph)
- **Taxonomic Classification** : APIS (J. Badger)
- Fragment Recruitment :Advanced Reference Viewer (D. Rusch)
- Metagenomic Assembly : Celera Assembler (G. Sutton & J. Miller)
- Sample Comparison

Making sense of everything in the context of **METADATA**

General Questions

Who are they?

Species, Taxonomic distribution...

How many?

Distribution across sites and filters

What are they doing?

Functional profiles

Metabolic profiles

J. Craig Venter

MR Specific Questions

- Metabolic profiles across sites and filters
- Pathways coverage and abundance
- What known characterized pathways and how many?
- What novel pathways are there?
- Metabolic network

J. Craig Venter

Metabolic Reconstruction

From the Annotation Pipeline (orf based)
 Proteins → EC assignment → Pathways prediction
 (EC to MetaCyc/Kegg mapping)

Sources for EC : TIGRFAM PFAM High confidence blast hit to Uniref100/Panda RPSblast to EC profiles from PRIAM

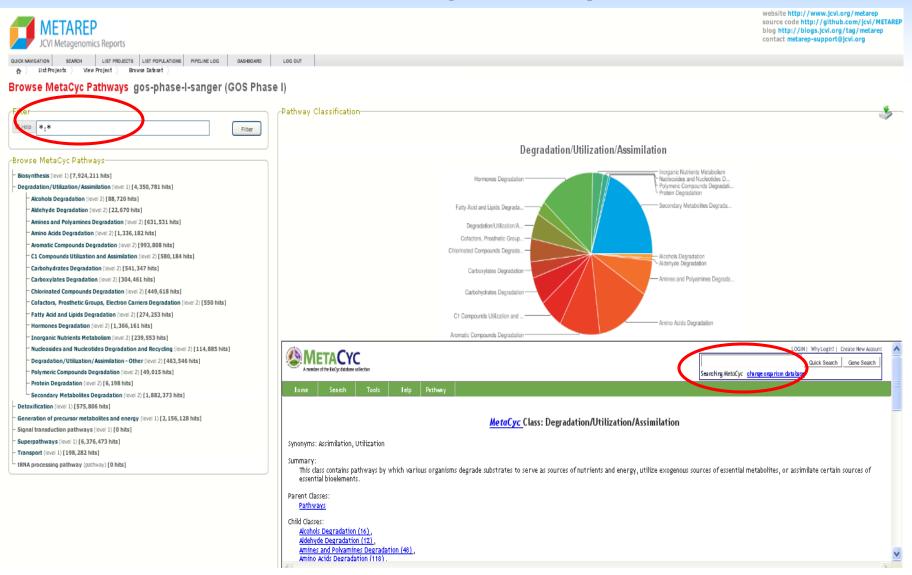
From BlastX to a Functional database (read based)
 Reads → Blastx Metacyc/Kegg → Pathways prediction

J. Craig Venter

Browse/analyze/compare pathways across datasets in the context of annotation and Metadata

website www.jcvi.org/metarep source code http://github.com/jcvi/METAREP blog http://blogs.jcvi.org/tag/metarep contact metarep-support@jcvi.org

METAREP is a web interface designed to help scientists to view, query and compare annotation data derived from proteins called on metagenomics reads


> Developer : Johannes Goll Published in Bioinformatics

www.jcvi.org/metarep

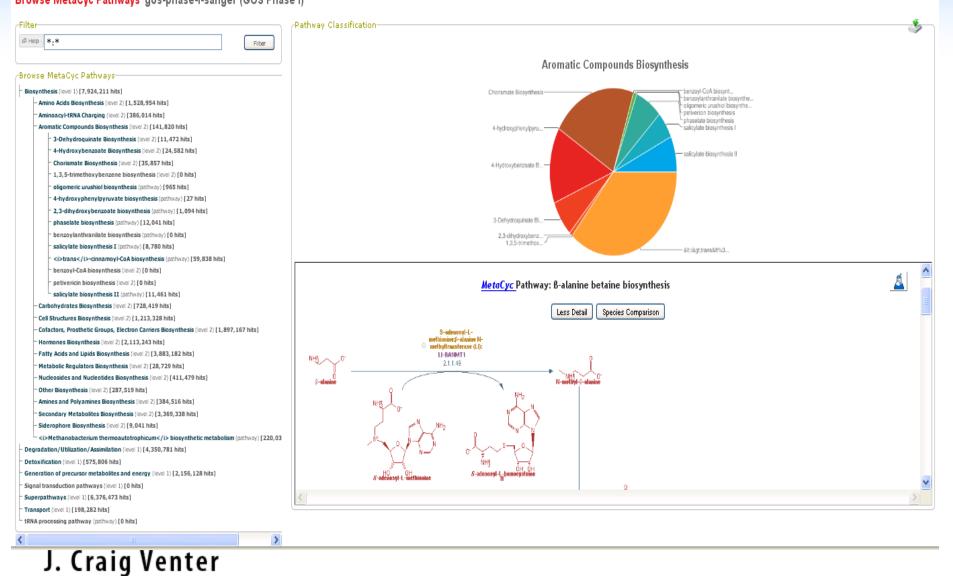
ΙΝ S Τ Ι Τ U Τ Ε

J. Craig Venter

Browse pathways

J. Craig Venter

View Project


List Projects

ñ.

Browse MetaCyc Pathways gos-phase-I-sanger (GOS Phase I)

Browce Datacet

LOG OUT

Compare pathways across datasets

QUICK NAVIGATION SEARCH

LIST PROJECTS LIST POPULATIONS PIPELINE LOG Project Compare Datasets

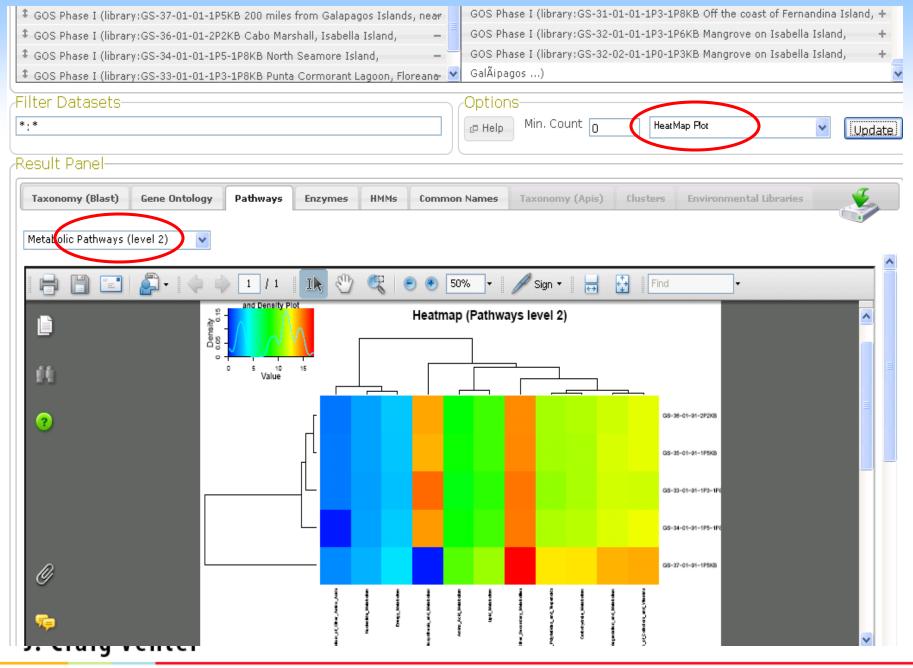
DASHBOARD

LOG OUT

List Projects View Project)

Compare

Select Datasets-


3 items selected	Remove all	project datasets all datasets Add all
GOS Phase I (library:GS-00a-01-01-2P5KB Sargasso Sea pilot Stat	ion 13 #1) -	GUS Phase I (library:GS-UID-UI-UI-2PU-4PUKB Sargasso Sea pilot Hydrostation is 🔼
GOS Phase I (library:GS-00b-01-01-10P0KB Sargasso Sea pilot Sta	ation 13 #2) -	GOS Phase I (library:GS-01c-01-01-3P0KB Off the coast of Nantucket, MA, USA 🛛 + 🚞
COS Phase I (library:GS-00c-01-01-3P5KB Sargasso Sea pilot Stat		GOS Phase I (library:GS-02-01-01-1P6KB Gulf of Maine, south of Canadian maritime
• GOS Phase I (librar):GS-000-01-01-3F3KB Sargasso Sea phot Stat	IUC Station S) —	GOS Phase I (library:GS-03-01-01-2P2KB Browns Bank, Gulf of Maine, Canada)+
		GOS Phase I (library:GS-04-01-01-1P4-1P8KB Outside Halifax, Nova Scotia, 🛛 🕂 🥃

Filter Datasets	Options	IS-	5
* . *	🗗 Help	Min. Count O Absolute Counts Vpdate	

Result Panel

Taxonomy (Blast) Gene Ontology	Pathways Er	nzymes HMMs	Common Names	Taxonomy (Apis)	Clusters	Environmental Libraries
Metabolic Pathways (level 2)						flip axis zoom in zoom out

Category 🗧	GS-00a-01-01-2P5KB 🖨	GS-00b-01-01-10P0KB 🗢	GS-00c-01-01-3P5KB 🖨	Tota₿
Amino Acid Metabolism (map15000)	201771	119374	126735	447880
Biosynthesis of Other Secondary Metabolites (map20000)	374020	206129	224140	804289
Biosynthesis of Polyketides and Terpenoids (map19000)	273351	156488	166821	596660
Carbohydrate Metabolism (map11000)	277686	158691	170768	607145
Energy Metabolism (map12000)	67356	43902	45249	156507
Glycan Biosynthesis and Metabolism (map17000)	323422	192921	213199	729542
Lipid Metabolism (map13000)	234366	131863	144836	511065
Metabolism of Cofactors and Vitamins (map18000)	286280	170735	182301	639316
Metabolism of Other Amino Acids (map16000)	42430	22828	25705	90963
Nucleotide Metabolism (map14000)	43865	31095	34304	109264
Xenobiotics Biodegradation and Metabolism (map21000)	321012	168365	184180	673557

Pathways Tools for GOS

- Metagenomic specific predictions Incorporate taxonomic resolution when predicting pathways
- Confidence Scores for the pathways
- Incorporate more annotation evidence types in predictions other than EC
- Ability to overlay and visualize expression data
- Full integration of pathways tools into Metarep
- Performance enhancements to handle metagenomic data volume

J. Craig Venter

Conclusion

Who are they?

Species, Taxonomic distribution...

How many?

Distribution across sites and filters

What are they doing?

Functional profiles

Metabolic profiles

J. Craig Venter

Acknowledgements

Metagenomic PI's & Coordinators

Shibu Yooseph Barbara Methe

Metagenomic Bioinformatics

& Software Engineers

Johannes Goll Jeff Hoover Alex Richter Aaron Tenney Daniel Brami Monika Bihan Kelvin Li

GOS Funded by DOE Genomics: GTL Program Gordon and Betty Moore Foundation J. Craig Venter Science Foundation J. Craig Venter

Metagenomic Pl's

Doug Rusch Andy Allen Shannon Williamson Andrey Tovtchigretchko Jonathan Badger **Postdocs** Seung-Jin Sul Youngik Yang

Leadership

Robert Friedman, Karen Nelson & J. Craig Venter

Thank You

J. Craig Venter