Comparison of four Cupriavidus metallidurans strains using Phenotype MicroArray™ analysis

A. Van Assche¹, P. Monsieurs², C. Gaudreau³, B. Lievens¹, K. Willems¹, N. Leys², & R. Van Houdt²

¹ Laboratory for Process Microbial Ecology and Bioinspirational Management, Departement of Microbial and Molecular Systems, KU Leuven association, Thomas More, campus De Nayer, Scientia Terrae Research Institute, Sint Katelijne Waver, Belgium

² Unit of Microbiology, Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium

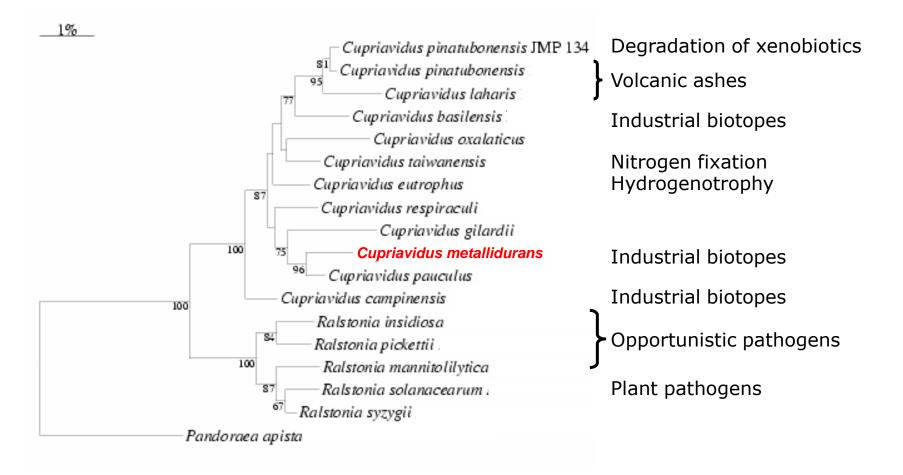
³ Microbiologie Médicale et Infectiologie, Centre Hospitalier de l'Université de Montréal-Hôpital Saint-Luc, Montréal, Québec, Canada

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

- Introduction: *Cupriavidus metallidurans*
- Comparative Genome Hybridization (CGH) of 14 C. metallidurans strains
- Results and discussion of Phenotype MicroArray[™] analysis of 4 C. metallidurans strains
- Conclusions

Cupriavidus metallidurans

- Often isolated from industrial sites mining-, metallurgical-, and chemical industries
- And other
 - space-related environments
 - patients with cystic fibrosis
 - causative agent of an invasive human infection
- Type strain: CH34
- Full genome sequence is available



Janssen et al., 2010; Langevin et al., 2011; Mijnendonckx et al., 2013

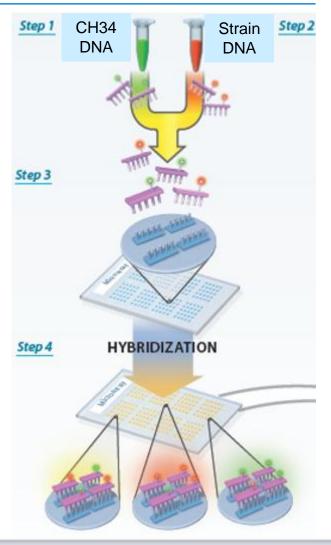
Cupriavidus and Ralstonia genera

• Class: β-Proteobacteria; Order: *Burkholderiales;* Family: *Burkholderiaceae*

Cupriavidus and International Space Station

- Numerous contamination events of ISS water systems by *C. metallidurans*
- Potable water on ISS:
 - Water used for crew consumption, including food rehydration
- Two types of water coexist on ISS
 - Russian standards
 - Silver (1.9 μ M \leq [Ag] \leq 4.6 μ M)
 - Not removed before consumption
 - US standards
 - Iodine ([Total iodine] = 6.0 mg/L, 1.0 mg/L \leq [residual iodine] \leq 4.0 mg/L)
 - Removed before consumption
- Russian and US water are not mixed

Cupriavidus metallidurans


- Isolated from different sources: Industrial – potable water – human
- Associated risks ? \rightarrow especially potable water ISS
- Astronauts \rightarrow decreased immune system
- Pathogenic potential ?
- What are differences between different strains ?
 - Data from comparative genome hybridization

Cupriavidus metallidurans strains

- Comparative whole genome hybridization
- A set of 14 different strains
- To gain insights in:
 - Conservation of genes (and traits)
 - Horizontal transfer/acquisition of genes
 - Evolutionary forces shaping the species

Cupriavidus metallidurans strains

Strain	Isolation site	Isolation place
СН34 ^т	Decantation tank, zinc factory	Liège, Belgium
CH42	Polluted sediments, zinc factory	Liège, Belgium
CH79	Polluted sediments, zinc factory	Liège, Belgium
31A	Galvanisation tank, metal factory	Holzminden, Germany
AS39	Mine tailings	Likasi-Sud, Congo
AS167	Mine tailings	Likasi-Sud, Congo
AS168	Mine tailings	Likasi-Sud, Congo
KT01	Wastewater treatment plant	Göttingen, Germany
КТ02	Wastewater treatment plant	Göttingen, Germany
KT21	Wastewater treatment plant	Göttingen, Germany
SV661	Non-ferrous industry	Beerse, Belgium
NE12	Assembly facility Kennedy Space Center	Florida, USA
NA1	SVO-ZV with Russian ground-supplied water	International Space Station
NA2	American contingency water container	International Space Station
NA4	filter of the Russian SRV-K module	International Space Station

CGH: general comparison

6205	94	94	85	84	88	93	91	75	79	79	82	79	79	78	CH34
5814	5814	98	91	89	93	97	95	80	83	83	86	83	83	82	KT02
5840	5708	5840	90	88	92	96	94	78	82	82	86	83	83	82	KT21
5285	5278	5264	5285	95	93	92	91	83	85	84	86	84	84	83	KT01
5214	5187	5142	5004	5214	94	91	92	83	87	85	86	84	84	83	AS168
5490	5427	5396	5089	5169	5490	95	97	81	86	84	86	83	84	82	SV661
5749	5663	5615	5263	5213	5442	5749	97	80	84	83	85	83	83	82	AS39
5632	5536	5502	5144	5187	5438	5579	5632	80	85	83	85	83	83	82	AS167
4666	4630	4584	4385	4342	4451	4596	4506	4666	86	88	84	89	91	90	CH79
4906	4837	4818	4514	4529	4732	4813	4789	4243	4906	91	91	88	89	88	31A
4898	4815	4788	4443	4416	4595	4771	4684	4293	4472	4898	89	89	90	89	CH42
5106	4974	5011	4558	4467	4703	4881	4788	4292	4649	4521	5106	90	90	89	NA4
4903	4818	4821	4448	4375	4576	4745	4650	4383	4339	4355	4578	4903	95	95	NE12
4919	4828	4833	4458	4375	4585	4754	4657	4457	4376	4425	4609	4678	4919	97	NA2
4866	4780	4784	4400	4315	4515	4691	4594	4373	4326	4335	4568	4650	4761	4866	NA1
 CH34	KT02	KT21	KT01	AS168	SV661	AS39	AS167	CH79	31A	CH42	NA4	NE12	NA2	NA1	

Van Houdt et al., 2012

CGH: genomic islands on CHR1

		Size	Family	Features
	CMGI-1	109 kb	PAGI-2	island from P. aeruginosa from cystic fibrosis patient
	CMGI-2	101 kb	Tn <i>4371</i>	hydrogenotrophy, metabolism aromatic compounds
	CMGI-3	97 kb	Tn <i>4371</i>	CO ₂ fixation, hydrogenotrophy
	CMGI-4	56 kb	Tn <i>4371</i>	
	CMGI-5	25 kb		
	CMGI-6	17 kb		
	CMGI-7	15 kb		arsenic resistance
	CMGI-8	12 kb		
	CMGI-9	20 kb		
	CMGI-10	20 kb		
	CMGI-11	10 kb		putative fimbrial operon
SV661 AS168 KT21 KT02 AS167 KT01 31A 31A CH22 CH22 CH22 NA4 NA1 NA1				
	J			

Cupriavidus metallidurans

- Metal resistance determinants are highly conserved among C. metallidurans strains independent from their isolation place
 - acquired these functions long ago? (biased towards anthropogenic environments?)
- GI/MGEs more specific for metal polluted environments
 - Acquired by HGT, interaction with different populations? More environmental pressure?
- What are the differences in phenotype?

Cupriavidus metallidurans

Biolog shows us the way...

... It's the Phenotype MicroArray $^{\rm TM}$

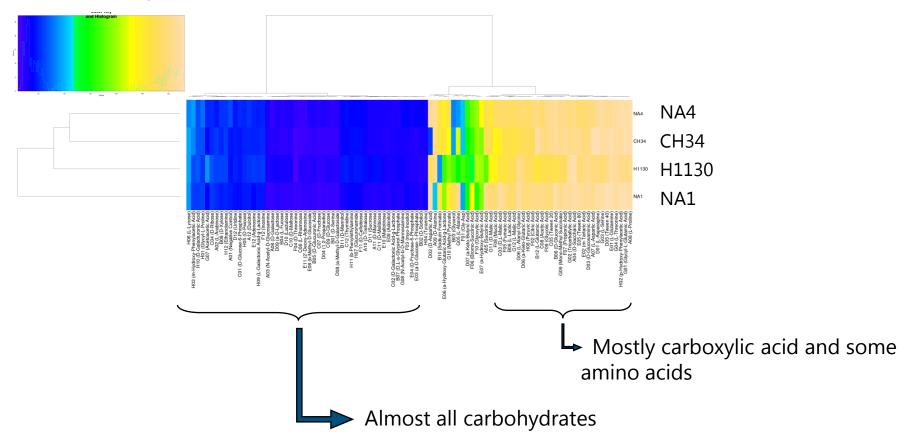
(Slightly modified from the lyrics of "No hidden path" by Neil Young)

Selected strains

 6205	94	94	85	84	88	93	91	75	79	79	82	79	79	78	CH34
5814	5814	98	91	89	93	97	95	80	83	83	86	83	83	82	KT02
5840	5708	5840	90	88	92	96	94	78	82	82	86	83	83	82	KT21
5285	5278	5264	5285	95	93	92	91	83	85	84	86	84	84	83	KT01
5214	5187	5142	5004	5214	94	91	92	83	87	85	86	84	84	83	AS168
5490	5427	5396	5089	5169	5490	95	97	81	86	84	86	83	84	82	SV661
5749	5663	5615	5263	5213	5442	5749	97	80	84	83	85	83	83	82	AS39
5632	5536	5502	5144	5187	5438	5579	5632	80	85	83	85	83	83	82	AS167
4666	4630	4584	4385	4342	4451	4596	4506	4666	86	88	84	89	91	90	CH79
 4906	4837	4818	4514	4529	4732	4813	4789	4243	4906	91	91	88	89	88	31A
4898	4815	4788	4443	4416	4595	4010	4684	4293	4472	4898	89	89	90	89	CH42
														ſ	
5106	4974	5011	4558	4467	4703	4881	4788	4292	4649	4521	5106	90	90	89	NA4
4903	4818	4821	4448	4375	4576	4745	4650	4383	4339	4355	4578	4903	95	95	NE12
4919	4828	4833	4458	4375	4585	4754	4657	4457	4376	4425	4609	4678	4919	97	NA2
6988 CH34	4780 2011	4784 1217	4400 F0TX	4315 8	4515 G	4691 6ESY	4594 29	4373 62HO	4326 V1E	CH42	4568 450	4650 213N	4761 ZYN	4866 LAN	NA1
 Ь	Ϋ́	Ъ	Ϋ́	AS168	SV661	AS	AS167	Ю	e	СН	Ż	Ш Z	Ż	Ż	

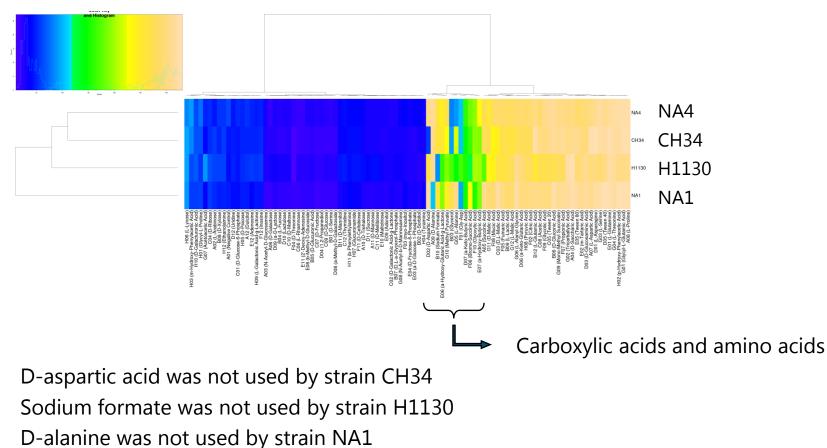
Van Houdt et al., 2012

13

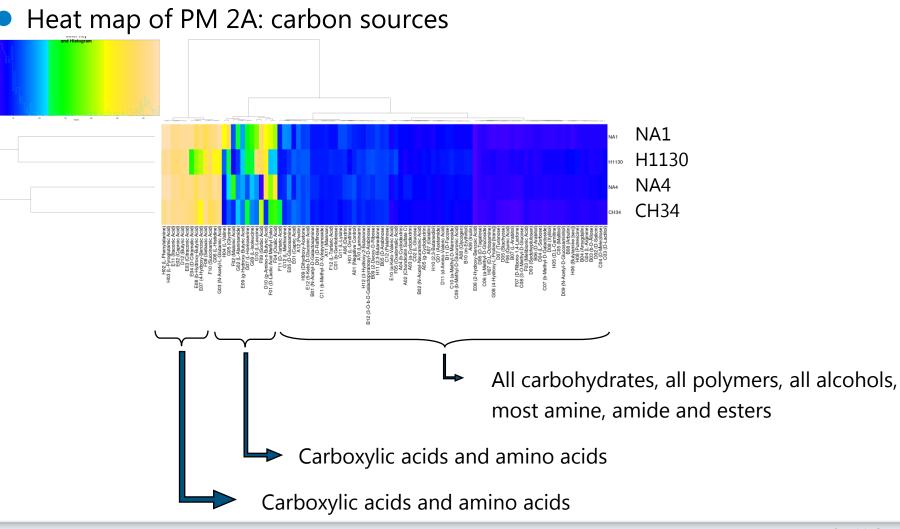

Phenotype MicroArray[™] analysis Set up

- Set up of PM analysis:
 - According to Biolog's instruction with minor modifications
 - Inoculum:
 - Grown on LB agar for 48 hours at 30 °C
 - Suspended in IF-0, $OD_{600} = 0.2$
 - 1:50 dilution in IF-0 with dye mix A
 - Carbon source used for PM 3, 6, 7, and 8
 - 2 mM of sodium succinate and 2 μM of ferric citrate
 - Incubation at 30 °C for 6 days
 - Data analysis with OmniLog[®] PM kinetic analysis software (version 1.6) and OPM an R package
 - Based on max height
 - Heat maps and radial plots

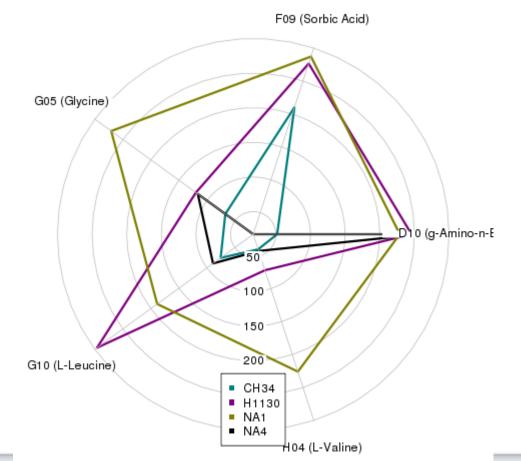
Phenotype MicroArray[™] analysis PM 1 MicroPlate[™]: Carbon sources


• Heat map of PM 1: carbon sources

Phenotype MicroArray[™] analysis PM 1 MicroPlate[™]: Carbon sources


• Heat map of PM 1: carbon sources

16 Copyright © 2013 SCK•CEN

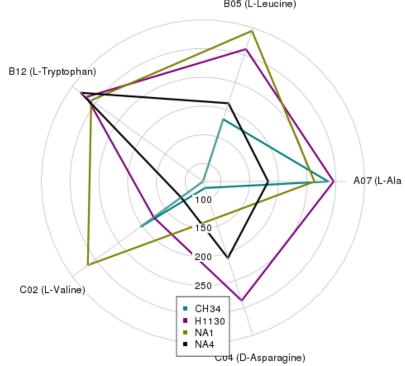

Phenotype MicroArray[™] analysis PM 2 MicroPlate[™]: Carbon sources

Phenotype MicroArray[™] analysis PM 2 MicroPlate[™]: Carbon sources


 Radial plot of sorbic acid, γ-amino-N-butyric acid, L-valine, L-Leucine, and glycine

Phenotype MicroArray[™] analysis PM 3 MicroPlate[™]: Nitrogen sources

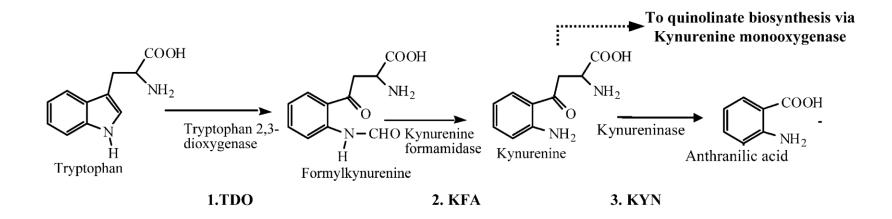
Heat map of PM 3B: nitrogen sources



- Very weak signal or no signal when inorganic nitrogen is the N-source
- Amino acids
 - No signal when L-arginine or L-methionine is the N-source
 - Strong signals for all strains when L-serine, L-aspartic acid, L-threonine, L-aspargine, L-glutamic acid, L-histidine, L-glutamine, L-proline, or L-phenylalanine is the N-source

Phenotype MicroArray[™] analysis PM 3 MicroPlate[™]: Nitrogen sources

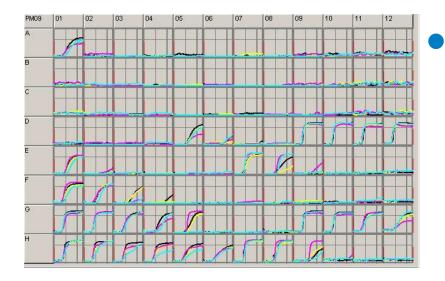
 Radial plot of L-leucine, L-alanine, D-aspargine, L-valine, and Ltryptophan



- Amino acids
 - Type strain CH34 is not able to use L-tryptophan
 - Reduced signals on PM6, 7 and 8 when Trp is part of a dipeptide

Phenotype MicroArray[™] analysis PM 3 MicroPlate[™]: Nitrogen sources

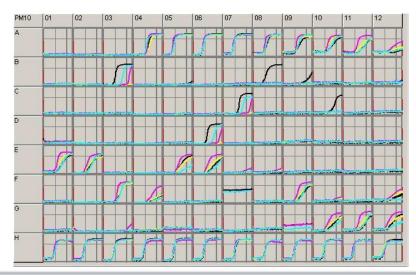
Importance of L-tryptophan for type strain CH34



N-source: L-tryptophan or a Trp dipeptide

- No or reduced signal for type strain CH34
 - Type strain CH34 has a stop codon in the *kynB* gene

Phenotype MicroArray[™] analysis PM 9 & 10 MicroPlate[™]: Osmolytes and pH

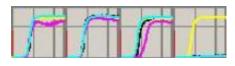


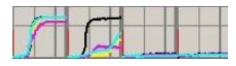
• PM10: pH

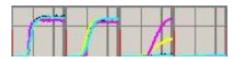
● ≥5

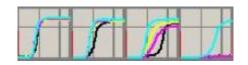
 Type strains CH34 shows better growth in acidic pHs when certain amino acids are present

- PM9: Osmolytes
 - All strains are sensitive to sodium chloride concentrations (> 1 %)
 - Other dose ranges of osmolytes give similar metabolic activity curves


Phenotype MicroArray[™] analysis PM 11 - 20 MicroPlate[™]: Chemical sensitivity


Chemical sensitivity plates


Strain CH34 (black), strain NA1 (blue), strain NA4 (yellow), and strains H1130 (purple)


- Amoxicillin: NA4 is more resistant
- Nafcillin: CH34 is more resistant
- Harmane: H1130 is more resistant
- Cytosine arabinoside: NA1 is more resistant

• No clear difference in heavy metal resistance

Conclusions

- Preferred carbon sources are carboxylic acids or amino acids, other carbon sources are less or not at all used
- Strains show clear differences in amino acid preference as their nitrogen source
- Differences in preferred carbon and nitrogen sources will be exploited for conjugation/mating assays between different C. metallidurans strains
- Differences are observed in the chemical sensitivity plates
 - No clear difference is observed on heavy metal resistance which is in agreement with previous studies
 - Antibiotic resistance is not markedly higher/more diverse for H1130
- Observed phenotypic differences will be further validated and studied by full genome sequencing

Acknowledgements

- Corresponding author: Rob Van Houdt (<u>rob.van.houdt@sckcen.be</u>)
- SCK•CEN: Ann Provoost, Kristel Mijnendonckx, and Max Mergeay
- Biolog: Andre Chouankam and Barry Bochner

 Funding: European Space Agency and Belgian Science Policy (COMICS project; C90356).

Thank you for your attention

Copyright © 2013 - SCK•CEN

PLEASE NOTE!

This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK•CEN. If this has been obtained, please reference it as a "personal communication. By courtesy of SCK•CEN".

SCK•CEN

Studiecentrum voor Kernenergie Centre d'Etude de l'Energie Nucléaire Belgian Nuclear Research Centre

> Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – BE-1160 BRUSSELS Operational Office: Boeretang 200 – BE-2400 MOL

